Dude, where’s my flying car? Future technologies we’re still waiting for

Flying cars

FIVE YEARS AWAY - You wait 50 years for a flying car, and then three come along at once.
First up is Vahana: an Airbus project to develop battery-powered, single-seater aircraft, designed to follow predetermined routes, only deviating to avoid collisions. Swivelling rotors on the wings will let it take off and land without a runway. Prototypes should be flying by the end of 2017.
Second, Dubai recently announced plans to test autonomous air taxis as a way to beat the UAE’s notorious traffic jams. The Volocopter is an electric multi-copter with 18 rotors and a fully autonomous control system. It’s essentially a scaled-up drone with two seats and up to 30 minutes of flying time.
But if you want something more like the airborne cars of 1950s sci-fi (or whatever we were dreaming up back in the good old days), try Urban Aeronautics’ Fancraft. The Israel-based company wants to fulfil the dream of “an aircraft that looks like the classic vision of a flying car: doesn’t have a wing, doesn’t have an exposed rotor, and can fly precisely from point to point,” says Janina Frankel-Yoeli, Urban Aeronautics’ vice president of marketing.
Earlier flying cars needed runways to take off and land which was, as Frankel-Yoeli says, “not much better than owning a car and an aircraft.” To go from point to point requires vertical take-off and landing, but for decades that could only be done by helicopters or larger aircraft. Urban Aeronautics’ solution is to use light but powerful engines, lightweight composite materials, and automated flight controls. Their ducted fan design – propellers housed in aerodynamic tubes – is powerful but unstable, so the Fancraft would be challenging for a human to fly unaided. Instead, computer-aided control tech takes over the tiny, split-second adjustments required to keep the car stable at speeds of 160km/h (100mph) or more.


Cormorant UAV Flight Test, March 2017 (including autonomous landing on a marker) (YouTube/UrbanAero)
But don’t put down a deposit yet. The main obstacle to a sky full of flying cars is regulation. Not only will every aircraft need to pass stringent safety tests, but a new system of air traffic control will be needed to cope with three-dimensional traffic jams above unwitting pedestrians. NASA is already working on that – tests have shown that multiple unmanned aerial vehicles (UAVs) can communicate with each other to avoid collisions. In the meantime, flying cars will mainly be reserved for emergency services and a few VIPs.

Cyborgs

20 YEARS AWAY - In many ways, we are already cyborgs: contact lenses fix short sightedness; cochlear implants restore hearing; prosthetic limbs help athletes to match or even outstrip their natural-bodied rivals; and exoskeletons allow paraplegic patients to walk again.
The next challenge looks to be controlling artificial limbs and senses as instinctively as we do our bodies.
Brain-computer interfaces are the latest focus of Facebook, Elon Musk and US defence research funders DARPA, among others. Other laboratory studies have already allowed patients to control prosthetic limbs via electrodes implanted in the brain. University of Pittsburgh scientists even connected a paralysed man’s sensory cortex to a robotic hand, allowing him to feel what the hand touched. Combining the strength, lightness and durability of today’s prosthetic materials with similar brain control methods would take us into superhuman, bionic territory.

As part of a study at the University of Pittsburgh, Nathan Copeland, a quadriplegic, has had electrodes implanted in his brain. These communicate with a computer to give him a sense of touch via a robotic hand.

Sensory augmentation is not far behind. Dr Robert Greenberg of US company Second Sight has developed implants that restore vision to blind patients. The company’s Orion device is a retinal prosthetic that uses externally mounted video cameras to relay visual signals directly to the wearer’s brain.
Over 250 patients tried Orion’s predecessor, the Argus II, which translated camera output to optical nerves near the eye. Orion will bypass the damaged eye entirely, sending signals to the visual cortex at the rear of the skull.
“We are restoring relatively crude, but useful, vision to blind patients rather than improving normal sight,” says Greenberg. “Today’s Argus II vision is like a blurry black-and-white television.” Orion should be an improvement, but “colour and higher resolution are in the future.”
While Greenberg is realistic about the current limitations, he’s optimistic that we will eventually be able to restore sight to better-than-normal levels. “There is no physical reason why we can’t create a high-resolution interface someday, but the engineering challenges are great,” he says.
“I would guess we are at least 20 years away from superhuman vision.”


Holidays in space

In 2001 US entrepreneur Dennis Tito became the first space tourist when he caught a rocket to the International Space Station – a bargain at only $20m! © Alexander Nemenov/AFP/Getty Images
ALREADY HERE, IF YOU’RE A BILLIONAIRE - No, we still don’t have hotels on the Moon or DisneyPlanet on Mars, but the first paying passengers have enjoyed unforgettable trips to the International Space Station. Now, private companies are racing to make space more accessible to non-millionaires. Virgin Galactic, SpaceX and even Manchester-based Starchaser Industries are testing the hardware that will safely get us there and home again.

Jetpack

Martin Jetpack 5000ft flight – highlights (YouTube/Martin Aircraft)

10 YEARS AWAY - Ready for your own Optionally Piloted Hovering Air Vehicle? New Zealand-based Martin Aircraft Company has your back. Okay, it’s the size of a small car and uses fans rather than jets, but it has a roll cage, parachute and can stay in the air for half an hour. Sadly, there’s still no firm on-sale date, so you have plenty of time to save up.


Mind-reading machines

fMRI scanners measure bloodflow in the brain, highlighting areas of increased activity. They could potentially be used to read our minds in the future © Alamy

2-10 YEARS AWAY  - Knowing what somebody is thinking would be a boon to law enforcement, suspicious partners, or Facebook advertisers. But attempts to match brain activity to specific thoughts have been crude and limited. But Prof Marcel Just, a psychologist at Carnegie Mellon University, has used functional magnetic resonance imaging (fMRI) to scan the brain and identify ideas as they form. His work goes beyond what a word looks or sounds like, to the building blocks of meaning.


fMRI is not usually time-specific. If someone’s brain is being scanned as they form a sentence, the successive ideas in the sentence will be blurred together in the scan image. “The novelty is our ability to separate out the individual concepts of the sentence,” says Just. This means training software to recognise the patterns of brain activity associated with different sentence elements.
In Just’s study, participants lay inside fMRI scanners and read sentences such as ‘The angry lawyer left the office’, designed to include broad concepts like emotion and changes of location. Data from these scans was used to build models of how sentences with similar meanings, such as ‘The tired jury left the court’, would be represented in brain activity. These predictions were consistent between individuals, suggesting that our brains handle these concepts in a similar way.
“We all use the same set of elements, even people who speak different languages,” says Just. “A model trained on data from English speakers can recognise thoughts from Mandarin speakers.”
There are limitations. While broad meanings can be reconstructed from the scans, similar concepts like tea/coffee, fish/duck may be harder to distinguish. Also, the subject has to be completely cooperative, which means it wouldn’t work well as an interrogation technique. And for now it requires an unwieldy and expensive fMRI scanner.
But Just’s team are working on an EEG (electroencephalography) version, which would only need a simple electrode cap to record electrical signals in different parts of the brain. He is optimistic about how soon a workable mind-reading device could be available. “Our grant ends in two years,” he says. “Ten years would be very slow and disappointing.”

No comments:

Post a Comment

Galaxy S9 pricing all but confirmed, and yep, it’s as bad as we thought

On Sunday, Samsung is  set to finally unveil  the Galaxy S9 and S9+, its answer to Apple’s  gamechanging iPhone X . As is hallowed tra...